A General Bayesian Network-Assisted Ensemble System for Context Prediction: An Emphasis on Location Prediction

نویسندگان

  • Kun Chang Lee
  • Heeryon Cho
چکیده

Context prediction, highlighted by accurate location prediction, has been at the heart of ubiquitous decision support systems. To improve the prediction accuracy of such systems, various methods have been proposed and tested; these include Bayesian networks, decision classifiers, and SVMs. Still, greater accuracy may be achieved when individual classifiers are integrated into an ensemble system. Meanwhile, General Bayesian Network (GBN) classifier possesses a great potential as an accurate decision support engine for context prediction. To leverage the power of both the GBN and the ensemble system, we propose a GBN-assisted ensemble system for location prediction. The proposed ensemble system uses variables extracted from Markov blanket of the GBN’s class node to integrate GBN, decision tree, and SVM. The proposed system was applied to a real-world location prediction dataset, and promising results were obtained. Practical implications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models

Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...

متن کامل

Designing a Ubiquitous Decision Support Engine for Context Prediction: General Bayesian Network Approach

Ubiquitous decision support systems have remained an imaginary and almost useless system for decades since its first introduction in early 1990’s. However, it came out of lab into real world as ubiquitous computing became tangible in the form of mobile devices, pervasive mechanisms, and various mobile Internet technologies. Typically, context-aware systems had received acclaims from both resear...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010